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Outline

The plasma edge sets boundary conditions on
the core plasma and needs to be understood

BOUT++ is a maturing code, able to simulate
an increasingly broad range of physical regimes
ν∗ > 1: Alcator C-Mod’s EDA H-mode

Linear: stability analysis
Nonlinear: comparison to experimental measurements

ν∗ < 1: DIII-D’s ELM-free H-mode
BOUT++ gyro-Landau fluid code is desired to aid the
interpretation of experimental measurements

Conclusions and future work
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The “Standard Model”: Peeling-Ballooning (PB) modes
constrain the pedestal in ELMy H-mode

Peeling and ballooning
modes couple at
intermediate 5 ≤ n ≤ 25 to
drive ELMs

Ideal MHD instability

Experimentally, ELMs are
routinely observed when
crossing the PB threshold

Ideal MHD codes such as
ELITE∗ can assess stability
to PB modes

∗ P. B. Snyder et al. Phys. Plasmas 9 2037 (2002).
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C-Mod’s EDA H-mode is a steady-state, high-performance
regime regulated continuously by a QCM edge fluctuation

The Enhanced Dα (EDA) H-mode∗ exhibits:

Excellent energy confinement
Reduced impurity confinement

EDA is C-mod’s “workhorse” H-mode

EDA pedestal regulated by a quasi-coherent
mode (QCM) oscillation ∼ 100 kHz

ν∗ > 1⇒ amenable to fluid analysis

∗ M. Greenwald et al. Phys. Plasmas 6 1943 (1999).
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ELITE shows that ideal PB modes are stable in EDA
H-mode; other physics needed to explain the QCM
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BOUT++ can solve a set of nonideal reduced MHD
equations, including η effects important for ν∗ > 1

Reduced MHD Equations∗
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Non-ideal Physics

Include resistivity

After gyroviscous cancella-
tion, the diamagnetic drift
modifies the vorticity

Using force balance and
assuming no net rotation,
Er0 = (1/niZie)∇⊥Pi0
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∗ B. D. Hazeltine and J. D. Meiss, Plasma Confinement (Dover, Mineola, NY, 2003).
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∇P was self-consistently varied to assess EDA’s linear
stability with BOUT++
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BOUT++ indicates PB modes are stable at experimental
values of ∇P
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BOUT++ marginal stability thresholds and growth rate
trends for PB modes agree with ELITE
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C-Mod’s resistivity drives unstable modes at experimental
values of ∇P that may be responsible for the QCM
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Nonlinear simulations show a quasi-coherent oscillation
qualitatively similar to EDA’s QCM
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Nonlinear simulations show a quasi-coherent oscillation
qualitatively similar to EDA’s QCM
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The nonlinear quasi-coherent oscillation is peaked about
n ∼ 16, similar to C-Mod’s EDA QCM

BOUT++ predicted toroidal
mode spectrum

Nonlinear saturation occurs at
t ∼ 40µs, requiring ∼ 400 τA
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The nonlinearly computed mode spans the separatrix and
sits in the edge Er well, similar to previous modeling results

BOUT++

-6 -4 -2 0 2 4 6
R - Rsep [mm]

-2

-1

0

1

2

V
a
lu

e
s
 f
ro

m
 B

O
U

T
+

+

       

 

 

 

 

 

P0 / 10 [kPa]

δP [kPa]

Er / 100 [kV/m]

2002 BOUT Results∗

∗ A. Mazurenko et al. Phys. Rev. Lett. 89
225004 (2002).
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The pressure and potential fluctuations are out of phase, in
contrast to recent QCM measurements

BOUT++ δp and δφ predictions:
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Mirror Langmuir Probe
(MLP) Measurements∗:

⇒ Drift wave!
∗B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).

E. Davis Opportunities for experimental and modeling synergy



The pressure and potential fluctuations are out of phase, in
contrast to recent QCM measurements

BOUT++ δp and δφ predictions:

36 38 40 42 44 46 48
t [µs]

-1.0

-0.5

0.0

0.5

1.0

S
ig

n
a

l 
[A

U
]

       

 

 

 

 

 
δp
δφ
δp
δφ

Mirror Langmuir Probe
(MLP) Measurements∗:

⇒ Drift wave!
∗B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).

E. Davis Opportunities for experimental and modeling synergy



The pressure and potential fluctuations are out of phase, in
contrast to recent QCM measurements

BOUT++ δp and δφ predictions:

36 38 40 42 44 46 48
t [µs]

-1.0

-0.5

0.0

0.5

1.0

S
ig

n
a

l 
[A

U
]

       

 

 

 

 

 
δp
δφ
δp
δφ

Mirror Langmuir Probe
(MLP) Measurements∗:

⇒ Drift wave!
∗B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).

E. Davis Opportunities for experimental and modeling synergy



The pressure and potential fluctuations are out of phase, in
contrast to recent QCM measurements

BOUT++ δp and δφ predictions:
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Hall term in Ohm’s law for drift
wave-like response may help:

∂A||
∂t = −∇||Φ− ηJ|| +

1
en∇||pe

or may need 2-fluid model

Mirror Langmuir Probe
(MLP) Measurements∗:

⇒ Drift wave!
∗B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).
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Gyro-Landau BOUT++ needed to interpret measurements
in ν∗ < 1 regimes, e.g. DIII-D’s ELM-free H-mode

Phase Contrast Imaging (PCI)
measures
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The S(f , k) measured by PCI in DIII-D’s ELM-free H-mode
has highly asymmetric features with well-defined vph
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PCI’s S(f , k) structures suggest regions of strong localized
edge turbulence∗, begging theoretical validation

Typical H-mode Er well

∗ J. C. Rost et al. in preparation (2013), and
J. C. Rost et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).
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Conclusions and Future Work

BOUT++ ideal linear growth rates are in good
agreement with those from ELITE

Both C-Mod and DIII-D are capable of
accessing ν∗ > 1 and ν∗ < 1 regimes
ν∗ > 1 simulations in BOUT++

EDA H-mode is a steady-state, high performance operational
regime in C-Mod not explained by PB theory
Inclusion of C-Mod’s resistivity drives RBMs that may explain
the QCM and the resulting particle flux
Disagreement with MLP measurements indicates the need to
include drift wave physics

ν∗ < 1 simulations in BOUT++
PCI measures asymmetric turbulent spectra in DIII-D’s
ELM-free H-modes
Modeling with the gyro-Landau extension to BOUT++ will
complement empirical knowledge
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C-Mod’s mirror Langmuir probe measurements show QCM
lives in region with positive radial electric field∗

∗B. LaBombard et al. TTF Workshop,
Santa Rosa, CA (Apr. 9-12, 2013).
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